14 research outputs found

    On growth and fluctuation of k-abelian complexity

    Get PDF
    An extension of abelian complexity, so called k-abelian complexity, has been considered recently in a number of articles. This paper considers two particular aspects of this extension: First, how much the complexity can increase when moving from a level k to the next one. Second, how much the complexity of a given word can fluctuate. For both questions we give optimal solutions. (C) 2017 Elsevier Ltd. All rights reserved

    Variations of the Morse-Hedlund Theorem for k-Abelian Equivalence

    Get PDF
    In this paper we investigate local-to-global phenomena for a new family of complexity functions of infinite words indexed by k >= 0. Two finite words u and v are said to be k-abelian equivalent if for all words x of length less than or equal to k, the number of occurrences of x in u is equal to the number of occurrences of x in v. This defines a family of equivalence relations, bridging the gap between the usual notion of abelian equivalence (when k = 1) and equality (when k = infinity). Given an infinite word w, we consider the associated complexity function which counts the number of k-abelian equivalence classes of factors of w of length n. As a whole, these complexity functions have a number of common features: Each gives a characterization of periodicity in the context of bi-infinite words, and each can be used to characterize Sturmian words in the framework of aperiodic one-sided infinite words. Nevertheless, they also exhibit a number of striking differences, the study of which is one of the main topics of our paper

    Degrees of Infinite Words, Polynomials and Atoms

    Get PDF
    We study finite-state transducers and their power for transforming infinite words. Infinite sequences of symbols are of paramount importance in a wide range of fields, from formal languages to pure mathematics and physics. While finite automata for recognising and transforming languages are well-understood, very little is known about the power of automata to transform infinite words.The word transformation realised by finite-state transducers gives rise to a complexity comparison of words and thereby induces equivalence classes, called (transducer) degrees, and a partial order on these degrees. The ensuing hierarchy of degrees is analogous to the recursion-theoretic degrees of unsolvability, also known as Turing degrees, where the transformational devices are Turing machines. However, as a complexity measure, Turing machines are too strong: they trivialise the classification problem by identifying all computable words. Finite-state transducers give rise to a much more fine-grained, discriminating hierarchy. In contrast to Turing degrees, hardly anything is known about transducer degrees, in spite of their naturality.We use methods from linear algebra and analysis to show that there are infinitely many atoms in the transducer degrees, that is, minimal non-trivial degrees

    Certification of proving termination of term rewriting by matrix interpretations

    No full text

    Squeezing the infinite into the finite: Handling the OT candidate set with Finite State technology

    No full text
    Finite State approaches to Optimality Theory have had two goals. The earlier and less ambitious one was to compute the optimal output by compiling a finite state automaton for each underlying representation. Newer approaches aimed at realizing the OT-systems as FS transducers mapping any underlying representation to the corresponding surface form. After reviewing why the second one fails for most linguistically interesting cases, we use its ideas to accomplish the first goal. Finally, we present how this approach could be used in the future as a-hopefully cognitively adequate-model of the mental lexicon
    corecore